add rotary encoder, parameters, multiple strips

This commit is contained in:
Sophie Schiller 2021-02-17 13:26:52 +01:00
parent 777f32b3af
commit adad6b5117
2 changed files with 122 additions and 45 deletions

View file

@ -15,3 +15,4 @@ framework = arduino
lib_deps =
rfetick/MPU6050_light@^1.1.0
fastled/FastLED@^3.4.0
mathertel/RotaryEncoder@^1.5.0

View file

@ -6,19 +6,22 @@
#include <Wire.h>
#include <FastLED.h>
#include <MPU6050_light.h>
#include <RotaryEncoder.h>
#define LED_PIN 7
byte LED_PIN = 6;
byte mode = 5; // 0 for acceleration, 1 for fire, 2 for waterfall, 3 pride, 4 glitter, 5 pulse, 6 off
const byte NUM_MODES = 8;
byte parameter = 128;
byte modeSelect;
const byte NUM_MODES = 9;
const byte debug = 3;
const byte STRIPS = 6;
const byte NUM_LEDS = 10;
const byte NUM_LEDS = 15;
const byte FRAMES_PER_SECOND = 60;
const float range = 0.5; //accelleration range in g
const byte BRIGHTNESS = 50;
const byte COOLING = 80;
byte BRIGHTNESS = 2;
const byte COOLING = 47;
const byte SPARKING = 50;
uint8_t gHue = 0;
@ -31,29 +34,45 @@ float h[NUM_BALLS] ; // An array of heights
float vImpact0 = sqrt( -2 * GRAVITY * h0 ); // Impact velocity of the ball when it hits the ground if "dropped" from the top of the strip
float vImpact[NUM_BALLS] ; // As time goes on the impact velocity will change, so make an array to store those values
float tCycle[NUM_BALLS] ; // The time since the last time the ball struck the ground
int pos[NUM_BALLS] ; // The integer position of the dot on the strip (LED index)
byte pos[NUM_BALLS] ; // The integer position of the dot on the strip (LED index)
long tLast[NUM_BALLS] ; // The clock time of the last ground strike
float COR[NUM_BALLS] ; // Coefficient of Restitution (bounce damping)
float accelerationHistory [STRIPS];
int encoderPosition = 1;
MPU6050 mpu(Wire);
CRGB leds[NUM_LEDS * STRIPS];
CRGB ledsR[NUM_LEDS * STRIPS];
CRGBPalette16 gPal;
CRGB flagcolors[6] = {CRGB::Red, CRGB::DarkOrange, CRGB::Yellow, CRGB::DarkGreen, CRGB::Blue, CRGB::DarkViolet};
CRGB flagcolors[3][6] {{CRGB::Red, CRGB::DarkOrange, CRGB::Yellow, CRGB::DarkGreen, CRGB::Blue, CRGB::DarkViolet},
{CRGB::DarkBlue, CRGB::DeepPink, CRGB::Gray, CRGB::Gray, CRGB::DeepPink, CRGB::DarkBlue},
{CRGB::DeepPink, CRGB::Gray, CRGB::DarkViolet, CRGB::Black, CRGB::Blue, CRGB::Black}};
const byte modeSwitchPin = 2;
RotaryEncoder encoder(A2, A3);
void setup() {
Serial.begin(19200);
//setup LEDs
FastLED.addLeds<WS2812, LED_PIN, GRB>(leds, NUM_LEDS*STRIPS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 6, GRB>(ledsR, NUM_LEDS * 0, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 7, GRB>(ledsR, NUM_LEDS * 1, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 8, GRB>(ledsR, NUM_LEDS * 2, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 9, GRB>(ledsR, NUM_LEDS * 3, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 10, GRB>(ledsR, NUM_LEDS * 4, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<WS2812, 11, GRB>(ledsR, NUM_LEDS * 5, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.setBrightness( BRIGHTNESS );
pinMode(modeSwitchPin, INPUT_PULLUP);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
attachInterrupt(digitalPinToInterrupt(modeSwitchPin), setMode, RISING);
PCICR |= (1 << PCIE1);
PCMSK1 |= (1 << PCINT10) | (1 << PCINT11);
for (int i = 0; i<STRIPS; i++) {
accelerationHistory[i] = 1;
}
@ -82,6 +101,12 @@ void setup() {
}
// The Interrupt Service Routine for Pin Change Interrupt 1
// This routine will only be called on any signal change on A2 and A3: exactly where we need to check.
ISR(PCINT1_vect) {
encoder.tick(); // just call tick() to check the state.
}
float calculateOrientationData() {
mpu.update();
float accCombined = sqrt(pow(mpu.getAccX(), 2) + pow(mpu.getAccY(), 2) + pow(mpu.getAccZ(), 2));
@ -208,9 +233,9 @@ void drawFire(){
}
}
void drawPride(){
void drawPride(byte parameter){
for (int strip = 0; strip < STRIPS; strip++){
CRGB color = flagcolors[strip];
CRGB color = flagcolors[parameter % 3][strip];
for( int j = 0; j < NUM_LEDS; j++) {
int pixelnumber = (strip * NUM_LEDS) + j;
leds[pixelnumber] = color;
@ -218,13 +243,13 @@ void drawPride(){
}
}
void drawGlitter(){
fadeToBlackBy( leds, STRIPS*NUM_LEDS, 10);
void drawGlitter(byte parameter){
fadeToBlackBy( leds, STRIPS*NUM_LEDS, parameter/10);
int pos = random16(STRIPS*NUM_LEDS);
leds[pos] += CHSV( gHue + random8(64), 200, 255);
}
void drawPulse(){
void drawPulse(byte parameter){
static int current_step;
float steps = 2000;
CRGB color;
@ -232,23 +257,12 @@ void drawPulse(){
//float f = 0.5-0.5*cos(360/steps*float(current_step) + 360/steps*360/float(STRIPS)*float(strip));
float f = cos(360/steps*float(current_step) + 360/steps*360/float(2*STRIPS)*float(strip));
if (f < 0) f = 0;
color = CHSV(gHue , 255, int(255*f));
for( int j = 0; j < NUM_LEDS; j++) {
int pixelnumber = (strip * NUM_LEDS) + j;
leds[pixelnumber] = color;
if (mode == 5) {
color = CHSV(parameter , 255, int(255*f));
}
}
current_step++;
}
void drawKunsisLila(){
static int current_step;
float steps = 2000;
CRGB color;
for (int strip = 0; strip < STRIPS; strip++){
float f = cos(360/steps*float(current_step) + 360/steps*360/float(2*STRIPS)*float(strip));
if (f < 0) f = 0;
else {
color = CHSV(224 , 255, int(255*f));
}
for( int j = 0; j < NUM_LEDS; j++) {
int pixelnumber = (strip * NUM_LEDS) + j;
leds[pixelnumber] = color;
@ -289,18 +303,71 @@ void drawOff(){
}
void setMode(){
mode++;
if (mode >= NUM_MODES) {
mode = 0;
static unsigned long last_interrupt_time = 0;
unsigned long interrupt_time = millis();
if (interrupt_time - last_interrupt_time > 200) {
if (modeSelect == 2) {
encoder.setPosition(mode);
modeSelect = 0;
digitalWrite(3, HIGH);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
}
if (debug <= 3) {
Serial.print("Blinkmode:\t");
Serial.println(mode);
else if (modeSelect == 0) {
encoder.setPosition(parameter);
modeSelect = 1;
digitalWrite(3, LOW);
digitalWrite(4, HIGH);
digitalWrite(5, LOW);
}
else if (modeSelect == 1) {
encoder.setPosition(BRIGHTNESS);
modeSelect = 2;
digitalWrite(3, LOW);
digitalWrite(4, LOW);
digitalWrite(5, HIGH);
}
last_interrupt_time = interrupt_time;
}
}
void loop() {
encoder.tick();
int newPos = encoder.getPosition();
if (encoderPosition != newPos) {
encoderPosition = newPos;
if (debug <= 3) {
Serial.print("Position:\t");
Serial.print(encoderPosition);
Serial.print("\t");
Serial.print("modeSelect:\t");
Serial.print(modeSelect);
Serial.print("\t");
}
if (modeSelect == 0) {
mode = encoderPosition % NUM_MODES;
}
else if (modeSelect == 1){
parameter = encoderPosition % 255;
}
else if (modeSelect == 2){
BRIGHTNESS = encoderPosition % 32;
}
if (debug <= 3) {
Serial.print("Blinkmode:\t");
Serial.print(mode);
Serial.print("\t");
Serial.print("Parameter:\t");
Serial.print(parameter);
Serial.print("\t");
Serial.print("Brightness:\t");
Serial.println(BRIGHTNESS);
}
}
if (mode == 0) {
// === Read acceleromter data === //
float accCombined = calculateOrientationData();
@ -311,23 +378,32 @@ void loop() {
drawFire();
}
else if (mode == 3) {
drawPride();
drawPride(parameter);
}
else if (mode == 4) {
drawGlitter();
drawGlitter(parameter);
}
else if (mode == 5) {
drawPulse();
}
else if (mode == 6) {
drawKunsisLila();
else if ((mode == 5) || (mode ==6)) {
drawPulse(parameter);
}
else if (mode == 7) {
bounceBalls();
}
else if (mode == 8) {
else {
drawOff();
}
FastLED.setBrightness( BRIGHTNESS * 8 );
if (mode != 2){
for (uint8_t i=0; i<NUM_LEDS*STRIPS; i++) {
ledsR[NUM_LEDS*STRIPS-1-i] = leds[i];
}
}
else {
for (uint8_t i=0; i<NUM_LEDS*STRIPS; i++) {
ledsR[i] = leds[i];
}
}
FastLED.show();
gHue++;
FastLED.delay(1000 / FRAMES_PER_SECOND);