acceleration graph and fire
This commit is contained in:
parent
be8e71507b
commit
13b4aa1d4b
2 changed files with 154 additions and 155 deletions
|
@ -12,4 +12,6 @@
|
|||
platform = atmelavr
|
||||
board = uno
|
||||
framework = arduino
|
||||
lib_deps = fastled/FastLED@^3.4.0
|
||||
lib_deps =
|
||||
rfetick/MPU6050_light@^1.1.0
|
||||
fastled/FastLED@^3.4.0
|
||||
|
|
301
src/main.ino
301
src/main.ino
|
@ -5,189 +5,186 @@
|
|||
|
||||
#include <Wire.h>
|
||||
#include <FastLED.h>
|
||||
#include <MPU6050_light.h>
|
||||
|
||||
#define LED_PIN 7
|
||||
#define NUM_LEDS 20
|
||||
|
||||
const int MPU = 0x68; // MPU6050 I2C address
|
||||
float AccX, AccY, AccZ;
|
||||
float GyroX, GyroY, GyroZ;
|
||||
float accAngleX, accAngleY, accCombined, gyroAngleX, gyroAngleY, gyroAngleZ;
|
||||
float roll, pitch, yaw;
|
||||
float AccErrorX, AccErrorY, GyroErrorX, GyroErrorY, GyroErrorZ;
|
||||
float elapsedTime, currentTime, previousTime;
|
||||
int c = 0;
|
||||
boolean debug = true;
|
||||
const int mode = 2; // 1 for acceleration, 2 for fire
|
||||
const int debug = 2;
|
||||
const int STRIPS = 2;
|
||||
const int NUM_LEDS = 15;
|
||||
const int FRAMES_PER_SECOND = 30;
|
||||
const float range = 0.5; //accelleration range in g
|
||||
|
||||
CRGB leds[NUM_LEDS];
|
||||
const int BRIGHTNESS = 50;
|
||||
const int COOLING = 80;
|
||||
const int SPARKING = 50;
|
||||
|
||||
float accelerationHistory [STRIPS];
|
||||
|
||||
MPU6050 mpu(Wire);
|
||||
CRGB leds[NUM_LEDS * STRIPS];
|
||||
CRGBPalette16 gPal;
|
||||
|
||||
void setup() {
|
||||
Serial.begin(19200);
|
||||
//setup LEDs
|
||||
FastLED.addLeds<WS2812, LED_PIN, GRB>(leds, NUM_LEDS);
|
||||
FastLED.addLeds<WS2812, LED_PIN, GRB>(leds, NUM_LEDS*STRIPS).setCorrection( TypicalLEDStrip );
|
||||
FastLED.setBrightness( BRIGHTNESS );
|
||||
|
||||
//setup IMU
|
||||
Wire.begin(); // Initialize comunication
|
||||
Wire.beginTransmission(MPU); // Start communication with MPU6050 // MPU=0x68
|
||||
Wire.write(0x6B); // Talk to the register 6B
|
||||
Wire.write(0x00); // Make reset - place a 0 into the 6B register
|
||||
Wire.endTransmission(true); //end the transmission
|
||||
|
||||
// Configure Accelerometer Sensitivity - Full Scale Range (default +/- 2g)
|
||||
/*Wire.beginTransmission(MPU);
|
||||
Wire.write(0x1C); //Talk to the ACCEL_CONFIG register (1C hex)
|
||||
Wire.write(0x10); //Set the register bits as 00010000 (+/- 8g full scale range)
|
||||
Wire.endTransmission(true);
|
||||
// Configure Gyro Sensitivity - Full Scale Range (default +/- 250deg/s)
|
||||
Wire.beginTransmission(MPU);
|
||||
Wire.write(0x1B); // Talk to the GYRO_CONFIG register (1B hex)
|
||||
Wire.write(0x10); // Set the register bits as 00010000 (1000deg/s full scale)
|
||||
Wire.endTransmission(true);
|
||||
*/
|
||||
delay(20);
|
||||
|
||||
// Call this function if you need to get the IMU error values for your module
|
||||
//calculate_IMU_error();
|
||||
delay(200);
|
||||
gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::Yellow, CRGB::White);
|
||||
//gPal = CRGBPalette16( CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
|
||||
|
||||
for (int i = 0; i<STRIPS; i++) {
|
||||
accelerationHistory[i] = 1;
|
||||
}
|
||||
|
||||
void calculateOrientationData() {
|
||||
// === Read acceleromter data === //
|
||||
Wire.beginTransmission(MPU);
|
||||
Wire.write(0x3B); // Start with register 0x3B (ACCEL_XOUT_H)
|
||||
Wire.endTransmission(false);
|
||||
Wire.requestFrom(MPU, 6, true); // Read 6 registers total, each axis value is stored in 2 registers
|
||||
//For a range of +-2g, we need to divide the raw values by 16384, according to the datasheet
|
||||
AccX = (Wire.read() << 8 | Wire.read()) / 16384.0; // X-axis value
|
||||
AccY = (Wire.read() << 8 | Wire.read()) / 16384.0; // Y-axis value
|
||||
AccZ = (Wire.read() << 8 | Wire.read()) / 16384.0; // Z-axis value
|
||||
// Calculating Roll and Pitch from the accelerometer data
|
||||
accAngleX = (atan(AccY / sqrt(pow(AccX, 2) + pow(AccZ, 2))) * 180 / PI) - 0.50; // AccErrorX ~(0.58) See the calculate_IMU_error()custom function for more details
|
||||
accAngleY = (atan(-1 * AccX / sqrt(pow(AccY, 2) + pow(AccZ, 2))) * 180 / PI) + 1.98; // AccErrorY ~(-1.58)
|
||||
Wire.begin();
|
||||
byte status = mpu.begin();
|
||||
Serial.print(F("MPU6050 status: "));
|
||||
Serial.println(status);
|
||||
while(status!=0){ } // stop everything if could not connect to MPU6050
|
||||
|
||||
accCombined = sqrt(pow(AccX, 2) + pow(AccY, 2) + pow(AccZ, 2));
|
||||
Serial.println(F("Calculating offsets, do not move MPU6050"));
|
||||
delay(1000);
|
||||
mpu.calcOffsets(true,true); // gyro and accelero
|
||||
Serial.println("Done!\n");
|
||||
}
|
||||
|
||||
// === Read gyroscope data === //
|
||||
previousTime = currentTime; // Previous time is stored before the actual time read
|
||||
currentTime = millis(); // Current time actual time read
|
||||
elapsedTime = (currentTime - previousTime) / 1000; // Divide by 1000 to get seconds
|
||||
Wire.beginTransmission(MPU);
|
||||
Wire.write(0x43); // Gyro data first register address 0x43
|
||||
Wire.endTransmission(false);
|
||||
Wire.requestFrom(MPU, 6, true); // Read 4 registers total, each axis value is stored in 2 registers
|
||||
GyroX = (Wire.read() << 8 | Wire.read()) / 131.0; // For a 250deg/s range we have to divide first the raw value by 131.0, according to the datasheet
|
||||
GyroY = (Wire.read() << 8 | Wire.read()) / 131.0;
|
||||
GyroZ = (Wire.read() << 8 | Wire.read()) / 131.0;
|
||||
// Correct the outputs with the calculated error values
|
||||
GyroX = GyroX + 1.42; // GyroErrorX ~(-0.56)
|
||||
GyroY = GyroY - 0.51; // GyroErrorY ~(2)
|
||||
GyroZ = GyroZ + 1.00; // GyroErrorZ ~ (-0.8)
|
||||
|
||||
// Currently the raw values are in degrees per seconds, deg/s, so we need to multiply by sendonds (s) to get the angle in degrees
|
||||
gyroAngleX = gyroAngleX + GyroX * elapsedTime; // deg/s * s = deg
|
||||
gyroAngleY = gyroAngleY + GyroY * elapsedTime;
|
||||
yaw = yaw + GyroZ * elapsedTime;
|
||||
|
||||
// Complementary filter - combine acceleromter and gyro angle values
|
||||
roll = 0.96 * gyroAngleX + 0.04 * accAngleX;
|
||||
pitch = 0.96 * gyroAngleY + 0.04 * accAngleY;
|
||||
float calculateOrientationData() {
|
||||
mpu.update();
|
||||
float accCombined = sqrt(pow(mpu.getAccX(), 2) + pow(mpu.getAccY(), 2) + pow(mpu.getAccZ(), 2));
|
||||
|
||||
// Print the values on the serial monitor
|
||||
if (debug) {
|
||||
Serial.print("Acceleration: ");
|
||||
Serial.print(accCombined, 3);
|
||||
if (debug <= 1) {
|
||||
Serial.print(F("TEMPERATURE: "));Serial.println(mpu.getTemp());
|
||||
Serial.print(F("ACCELERO X: "));Serial.print(mpu.getAccX());
|
||||
Serial.print("\tY: ");Serial.print(mpu.getAccY());
|
||||
Serial.print("\tZ: ");Serial.println(mpu.getAccZ());
|
||||
|
||||
Serial.print(F("GYRO X: "));Serial.print(mpu.getGyroX());
|
||||
Serial.print("\tY: ");Serial.print(mpu.getGyroY());
|
||||
Serial.print("\tZ: ");Serial.println(mpu.getGyroZ());
|
||||
|
||||
Serial.print(F("ACC ANGLE X: "));Serial.print(mpu.getAccAngleX());
|
||||
Serial.print("\tY: ");Serial.println(mpu.getAccAngleY());
|
||||
|
||||
Serial.print(F("ANGLE X: "));Serial.print(mpu.getAngleX());
|
||||
Serial.print("\tY: ");Serial.print(mpu.getAngleY());
|
||||
Serial.print("\tZ: ");Serial.println(mpu.getAngleZ());
|
||||
}
|
||||
if (debug <= 2) {
|
||||
Serial.print("ACC COMBINED: ");
|
||||
Serial.println(accCombined, 3);
|
||||
}
|
||||
return accCombined;
|
||||
}
|
||||
|
||||
void drawAccelerationOnStrip(int strip, float acceleration){ // 0 1
|
||||
if (debug <= 2) {
|
||||
Serial.print("drawing strip ");
|
||||
Serial.print(strip);
|
||||
Serial.print("\t");
|
||||
Serial.print("Orientation: ");
|
||||
Serial.print(acceleration, 4);
|
||||
Serial.print("\t");
|
||||
Serial.print(roll);
|
||||
}
|
||||
|
||||
int stripStart = NUM_LEDS * strip; // 10*0 0
|
||||
if (debug <= 2) {
|
||||
Serial.print(stripStart);
|
||||
Serial.print("\t");
|
||||
Serial.print(pitch);
|
||||
}
|
||||
|
||||
int ledcutoff = stripStart + int((NUM_LEDS/(2*range))*acceleration - (NUM_LEDS/2)); // 0+(10/(2*0,5)*1-10/2) 5
|
||||
if (debug <= 2) {
|
||||
Serial.print(ledcutoff);
|
||||
Serial.print("\t");
|
||||
Serial.println(yaw);
|
||||
}
|
||||
|
||||
int stripEnd = (NUM_LEDS * (strip + 1)) - 1; // (10*(0+1))-1 9
|
||||
if (debug <= 2) {
|
||||
Serial.println(stripEnd);
|
||||
}
|
||||
|
||||
if ((ledcutoff < stripStart) || (ledcutoff > stripEnd)){
|
||||
for (int i = stripStart; i <= stripEnd; i++) {
|
||||
leds[i] = CRGB(0, 0, 64);
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i = stripStart; i <= ledcutoff; i++) {
|
||||
leds[i] = CRGB(64, 0, 0);
|
||||
}
|
||||
for (int i = ledcutoff; i <= stripEnd; i++) {
|
||||
leds[i] = CRGB(0, 64, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void enableLEDsOnAcceleration(){
|
||||
int ledcutoff = int(accCombined * NUM_LEDS / 2);
|
||||
if(debug) {
|
||||
Serial.print("[");
|
||||
void enableLEDsOnAcceleration(float accCombined){
|
||||
// draw all stored accelerations
|
||||
for (int i = 0; i < STRIPS; i++){
|
||||
drawAccelerationOnStrip(i, accelerationHistory[i]);
|
||||
}
|
||||
for (int i = 0; i <= ledcutoff; i++) {
|
||||
leds[i] = CRGB(64, 0, 0);
|
||||
if (debug) {
|
||||
Serial.print("|");
|
||||
//shift them to the front
|
||||
for (int i = 0; i < STRIPS-1; i++) {
|
||||
accelerationHistory[i] = accelerationHistory[i+1];
|
||||
}
|
||||
//add new entry at the end
|
||||
accelerationHistory[STRIPS-1] = accCombined;
|
||||
}
|
||||
|
||||
void calculateFire(int strip){
|
||||
// Array of temperature readings at each simulation cell
|
||||
static byte heat[STRIPS][NUM_LEDS];
|
||||
|
||||
// Step 1. Cool down every cell a little
|
||||
for( int i = 0; i < NUM_LEDS; i++) {
|
||||
heat[strip][i] = qsub8( heat[strip][i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
|
||||
}
|
||||
|
||||
// Step 2. Heat from each cell drifts 'up' and diffuses a little
|
||||
for( int k= NUM_LEDS - 1; k >= 2; k--) {
|
||||
heat[strip][k] = (heat[strip][k - 1] + heat[strip][k - 2] + heat[strip][k - 2] ) / 3;
|
||||
}
|
||||
|
||||
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
|
||||
if( random8() < SPARKING ) {
|
||||
int y = random8(7);
|
||||
heat[strip][y] = qadd8( heat[strip][y], random8(160,255) );
|
||||
}
|
||||
|
||||
// Step 4. Map from heat cells to LED colors
|
||||
for( int j = 0; j < NUM_LEDS; j++) {
|
||||
// Scale the heat value from 0-255 down to 0-240
|
||||
// for best results with color palettes.
|
||||
byte colorindex = scale8( heat[strip][j], 240);
|
||||
CRGB color = ColorFromPalette( gPal, colorindex);
|
||||
int pixelnumber = (strip * NUM_LEDS) + j;
|
||||
leds[pixelnumber] = color;
|
||||
}
|
||||
}
|
||||
for (int i = ledcutoff; i <= NUM_LEDS ; i++) {
|
||||
leds[i] = CRGB(0, 64, 0);
|
||||
if (debug) {
|
||||
Serial.print("-");
|
||||
|
||||
void drawFire(){
|
||||
for (int i = 0; i < STRIPS; i++){
|
||||
calculateFire(i);
|
||||
}
|
||||
}
|
||||
if(debug) {
|
||||
Serial.println("]");
|
||||
}
|
||||
FastLED.show();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (mode == 1) {
|
||||
// === Read acceleromter data === //
|
||||
calculateOrientationData();
|
||||
enableLEDsOnAcceleration();
|
||||
delay(20);
|
||||
float accCombined = calculateOrientationData();
|
||||
enableLEDsOnAcceleration(accCombined);
|
||||
FastLED.show();
|
||||
FastLED.delay(1000 / FRAMES_PER_SECOND);
|
||||
}
|
||||
else if (mode == 2) {
|
||||
random16_add_entropy( random());
|
||||
drawFire();
|
||||
FastLED.show();
|
||||
FastLED.delay(1000 / FRAMES_PER_SECOND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void calculate_IMU_error() {
|
||||
// We can call this funtion in the setup section to calculate the accelerometer and gyro data error. From here we will get the error values used in the above equations printed on the Serial Monitor.
|
||||
// Note that we should place the IMU flat in order to get the proper values, so that we then can the correct values
|
||||
// Read accelerometer values 200 times
|
||||
while (c < 200) {
|
||||
Wire.beginTransmission(MPU);
|
||||
Wire.write(0x3B);
|
||||
Wire.endTransmission(false);
|
||||
Wire.requestFrom(MPU, 6, true);
|
||||
AccX = (Wire.read() << 8 | Wire.read()) / 16384.0 ;
|
||||
AccY = (Wire.read() << 8 | Wire.read()) / 16384.0 ;
|
||||
AccZ = (Wire.read() << 8 | Wire.read()) / 16384.0 ;
|
||||
// Sum all readings
|
||||
AccErrorX = AccErrorX + ((atan((AccY) / sqrt(pow((AccX), 2) + pow((AccZ), 2))) * 180 / PI));
|
||||
AccErrorY = AccErrorY + ((atan(-1 * (AccX) / sqrt(pow((AccY), 2) + pow((AccZ), 2))) * 180 / PI));
|
||||
c++;
|
||||
}
|
||||
//Divide the sum by 200 to get the error value
|
||||
AccErrorX = AccErrorX / 200;
|
||||
AccErrorY = AccErrorY / 200;
|
||||
c = 0;
|
||||
// Read gyro values 200 times
|
||||
while (c < 200) {
|
||||
Wire.beginTransmission(MPU);
|
||||
Wire.write(0x43);
|
||||
Wire.endTransmission(false);
|
||||
Wire.requestFrom(MPU, 6, true);
|
||||
GyroX = Wire.read() << 8 | Wire.read();
|
||||
GyroY = Wire.read() << 8 | Wire.read();
|
||||
GyroZ = Wire.read() << 8 | Wire.read();
|
||||
// Sum all readings
|
||||
GyroErrorX = GyroErrorX + (GyroX / 131.0);
|
||||
GyroErrorY = GyroErrorY + (GyroY / 131.0);
|
||||
GyroErrorZ = GyroErrorZ + (GyroZ / 131.0);
|
||||
c++;
|
||||
}
|
||||
//Divide the sum by 200 to get the error value
|
||||
GyroErrorX = GyroErrorX / 200;
|
||||
GyroErrorY = GyroErrorY / 200;
|
||||
GyroErrorZ = GyroErrorZ / 200;
|
||||
// Print the error values on the Serial Monitor
|
||||
Serial.print("AccErrorX: ");
|
||||
Serial.println(AccErrorX);
|
||||
Serial.print("AccErrorY: ");
|
||||
Serial.println(AccErrorY);
|
||||
Serial.print("GyroErrorX: ");
|
||||
Serial.println(GyroErrorX);
|
||||
Serial.print("GyroErrorY: ");
|
||||
Serial.println(GyroErrorY);
|
||||
Serial.print("GyroErrorZ: ");
|
||||
Serial.println(GyroErrorZ);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue